Determining Significant Figures

Ms. D
CHEMISTRY

Uncertainty in Measurement

A digit that must be estimated is called uncertain. A measurement
always has some degree of uncertainty.

Why Is there Uncertainty?

Measurements are performed with instruments

* No instrument can read to an infinite number of decimal places

Which of these balances has the greatest uncertainty in measurement?

Precision and Accuracy

- Accuracy refers to the agreement of a particular value with the true value.
- \quad Precision refers to the degree of agreement among several measurements made in the same manner.

Neither accurate nor precise

Precise but not accurate

Precise AND accurate

Types of Error

Random Error (Indeterminate Error) measurement has an equal probability of being high or low.

Systematic Error (Determinate Error) - Occurs in the same direction each time (high or low), often resulting from poor technique or incorrect calibration.

DETERMINING THE NUMBER OF SIGNIFICANT DIGITS...

- The Atlantic-Pacific Rule

Atlantic

If a decimal point is present...

- Start at the Pacific side (left) of the number-
- Start with the first nonzero digit and count everything from there to the extreme. These are all considered significant:
- Ex:
$0.00238930 \mathrm{~cm}=6$ significant digits

If a decimal point is absent...

- Start from the Atlantic side (right side) of the number, start at the first nonzero digit and everything after that to the Pacific side is significant.
- Ex -
- $128021600=7$ significant digits

Practice:

1. $\mathbf{1 . 0 0 6 8}$
2. . 0045902
3. 0.002905
4. 10002
5. 18200
6. . 0048904
7. 1000.400
8. 5.0820
9. 200.008
10. 10000000000

Answers:

$$
\begin{array}{ll}
1.5 & 6.5 \\
\text { 2. } 5 & 7.7 \\
\text { 3. } 4 & 8.5 \\
4.5 & 9.6 \\
5.3 & 10.1
\end{array}
$$

Significant Digits in Calculations:.

- Multiplication \& Division: Your calculated value cannot have any more digits than your least specific measurement
- Example:
- $3.0 \mathrm{~m} \times 125.8 \mathrm{~m} \times 710 \mathrm{~m}=267954 \mathrm{~m}^{3}$

2 s.f 4 s.f 2 s.f answer must be rounded to two sig figs
$=270000 \mathrm{~m}^{3}$
2 significant figures

Sig Fig Practice \#3

Calculation
$3.24 \mathrm{~m}+7.0 \mathrm{~m}$
$100.0 \mathrm{~g}-23.73 \mathrm{~g}$
$0.02 \mathrm{~cm}+2.371 \mathrm{~cm}$
713.1 L - 3.872 L
$1818.2 \mathrm{lb}+3.37 \mathrm{lb}$
$2.030 \mathrm{~mL}-1.870 \mathrm{~mL}$

Calculator says:
10.24 m
76.27 g
2.391 cm
709.228 L
1821.57 lb
0.16 mL

Answer
10.2 m
76.3 g
2.39 cm
709.2 L
1821.6 lb
0.160 mL

Addition \& Subtraction

- Your calculated value cannot be more precise than the least precise place value of the measurement used in your calculation.
- Example:
- $12003 \mathrm{~cm}+56.2 \mathrm{~cm}=12059.2 \longrightarrow 2059$
- Since the first number is only determined to the ones place, the number is rounded to the ones place.

Sig Fig Practice \#3

Calculation
$3.24 \mathrm{~m}+7.0 \mathrm{~m}$
$100.0 \mathrm{~g}-23.73 \mathrm{~g}$
$0.02 \mathrm{~cm}+2.371 \mathrm{~cm}$
713.1 L - 3.872 L
$1818.2 \mathrm{lb}+3.37 \mathrm{lb}$
$2.030 \mathrm{~mL}-1.870 \mathrm{~mL}$

Calculator says:
10.24 m
76.27 g
2.391 cm
709.228 L
1821.57 lb
0.16 mL

Answer
10.2 m
76.3 g
2.39 cm
709.2 L
1821.6 lb
0.160 mL

Conversion Factors \& Constants

- Conversion factors and constants are exact measurements.
- They DO NOT play a role in determining the number of significant figures.
- Ex: Converting within the metric system or temperature conversions - the number of significant figures is determined by the precision of the instrument used to measure.
- ${ }^{\circ} \mathrm{F} \rightarrow{ }^{\circ} \mathrm{C} \quad$ The answer will be determined by the precision of the thermometer used.

