Determining Significant Figures

Ms. D CHEMISTRY

Uncertainty in Measurement

• A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.

Why Is there Uncertainty?

Measurements are performed with instruments

* No instrument can read to an infinite number of decimal places

Which of these balances has the greatest uncertainty in measurement?

Precision and Accuracy

- <u>Accuracy</u> refers to the agreement of a particular value with the true value.
- <u>Precision</u> refers to the degree of agreement among several measurements made in the same manner.

Neither accurate nor precise

Precise but not accurate

Precise AND accurate

Types of Error

- <u>Random Error</u> (Indeterminate Error) measurement has an equal probability of being high or low.
- <u>Systematic Error</u> (Determinate Error) Occurs in the same direction each time (high or low), often resulting from poor technique or incorrect calibration.

DETERMINING THE NUMBER OF SIGNIFICANT DIGITS...

• The Atlantic-Pacific Rule

If a decimal point is present...

- Start at the Pacific side (left) of the number-
 - Start with the first nonzero digit and count everything from there to the extreme. These are all considered significant:
 - Ex:

• 0.00238930 cm = 6 significant digits

If a decimal point is <u>absent...</u>

- Start from the Atlantic side (right side) of the number, start at the first <u>nonzero</u> digit and everything after that to the Pacific side is significant.
- Ex –

• 128021600 = 7 significant digits

Practice:

1.	1.0068	6.	.0048904
2.	.0045902	7.	1000.400
3.	0.002905	8.	5.0820
4.	10002	9.	200.008
5.	18200	10.	10000000000

Answers: **6.** 5 1. 5 2. 5 7. 7 **8**. 5 3. 4 9. 6 4. 5 5. 3 10. 1

Significant Digits in Calculations:.

- <u>Multiplication & Division</u>: Your calculated value cannot have any more digits than your least specific measurement
- <u>Example</u>:

2 s.f

• $3.0 \text{m} \ge 125.8 \text{m} \ge 710 \text{m} = 267954 \text{m}^3$

4 s.f 2 s.f answer must be rounded to two sig figs

$= 270000 \text{m}^3$

2 significant figures

Sig Fig Practice #3

Calculation	<u>Calculator says:</u>	<u>Answer</u>
3.24 m + 7.0 m	10.24 m	10.2 m
100.0 g - 23.73 g	76.27 g	76.3 g
0.02 cm + 2.371 cm	2.391 cm	2.39 cm
713.1 L - 3.872 L	709.228 L	709.2 L
1818.2 lb + 3.37 lb	1821.57 lb	1821.6 lb
2.030 mL - 1.870 mL	0.16 mL	0.160 mL

Addition & Subtraction

- Your calculated value cannot be more precise than the least precise **place value** of the measurement used in your calculation.
- Example:
- 12003cm + 56.2 cm = 12059.2 \longrightarrow 12059
- Since the first number is only determined to the ones place, the number is rounded to the ones place.

Sig Fig Practice #3

Calculation	<u>Calculator says:</u>	<u>Answer</u>
3.24 m + 7.0 m	10.24 m	10.2 m
100.0 g - 23.73 g	76.27 g	76.3 g
0.02 cm + 2.371 cm	2.391 cm	2.39 cm
713.1 L - 3.872 L	709.228 L	709.2 L
1818.2 lb + 3.37 lb	1821.57 lb	1821.6 lb
2.030 mL - 1.870 mL	0.16 mL	0.160 mL

Conversion Factors & Constants

- Conversion factors and constants are exact measurements.
- They DO NOT play a role in determining the number of significant figures.
- Ex: Converting within the metric system or temperature conversions – the number of significant figures is determined by the precision of the instrument used to measure.
 - $^{\circ}F \rightarrow ^{\circ}C$ The answer will be determined by the precision of the thermometer used.